Java Splash Screen

Roy Ratcliffe
20th January 2004

Abstract

Designing a simple but effective splash screen for Java is the primary goal.
Learning about Java is a secondary objective. This mini-project successfully de-
velops a Java splash screen implementation while meeting essential design goals
of maximum run-time efficiency along with minimal developer effort. Minimum
run-time overhead comes from using Java’s ImageObserver interface for fully
asynchronous image loading.

Contents
I__Infroduction 3
2 Requirements analysis 3
PT ComparisSOng v o v ittt et e e e e e e e 5
R.2 Optional requirements e 5
B Object-oriented design and implementation 6
BT TTASSOT . . . o v o v o e e e e e 6
B7ASSOCIATIONST e e e e e e e e e e 7
B3 Behaviourd e e 7
B.3.1 Optionalbehavioury 8
B.4 Implementation 9
A Tesfd 9
BT Nulltesfi o e e e e 10
B2 Loopdelayl e 11
B3 Simplesplash 11
B3T Conclusiond e e e e 12
A4 Frameinsfanfiafion e 12
BAT Conclusions o 0 i e e e e e e e e e 12
B5 Googlesplash 13
BHR5T Conclusions 0 0 e e s e e 13

#.6 Kandelshoter comparison
g./ Slowsplash
g.o Multiplesplasheg oo oo
g.9 oSplashduration
g.10 Cruftedsplash o o

A

SplashScreen.java

MyAppSplash.java difterences

Derek Clarkson’s comp.lang.java.gui article

Asynchronous load timing experiment

F. 1 Method L e e e e
1.1 lestprogram 1|o oo oo
.12 lestprogram o o ol

E.2.1 Uniprocessor N1 oo 00

£.2.2 Dual-processor Linux
E.3 Conclusion

Follow-on load timing experiment

E1T Method e e e
E1.1 Plattormd

IE3 Conclusions

Statistical Accumulator.java

IimeSac.java

threadtree.java

List of Figures

(L User views splash screen during application start-up
| Splash screen user interfacg L L0 oo

19

29

30

31

52

55

57

b Basic class diagram, AWT user interface componentson theright 6
2! Class diagram depicting composition associations 7
b Splashscreen class with methods for splash and dispose 8
b SplashScreen realises ImageObserver interfacd 10
V Main 74 and image loader g thread time-line§ 39
8 t, comparison, Linux workstation 44
% t1, comparison, Linux workstation 44
M0 7, comparison, Linux workstation 45
1 ¢ comparison, NI workstation 47
M2 ¢, comparison, NT workstation 47
M3 75 comparison, NT workstation 48
14 7, comparison, N1 workstation, main thread priority 4 49
L5 7, comparison, N1 workstation, main thread priority 4 49
[[6 {; comparison, N'T workstation, main thread priority 4 50

1 Introduction

Applications frequently display a “splash screen” at start-up. Splash screens have
become a user-interface standard. Java applications are no exception. System start-up
is a good time to advertise. Many applications unavoidably delay the user for a second
or longer while starting up. Giving the user something to look at and read during
that inevitable delay inarguably enhances feedback, an important user interface design
quality. Of course, zero delay is best, but delay with splash beats delay with nothing!

2 Requirements analysis

Splash screen functional requirements:
o Create a general-purpose splash screen for application start-up.

e The splash screen includes an image and optionally a status bar for progress
messages during load-time.

Operational constraints and non-functional requirements:

e Minimise any delay caused by the splash screen itself. Negligible delay prefer-
ably if possible. If the application loads faster than the image, skip the splash
screen.

e Implement using Java AWT only, not Swing. Executes faster because Java has
fewer classes to load before execution begins.

Figure [I's Use Case encapsulates the fundamental requirement.
Figure [sketches the user interface. Note absence of standard window decorations:
no title bar, sizing borders.

views splash screen during start-up
user

Figure 1: User views splash screen during application start-up

/'/1
P .
YA P)
{-...f <l [f-r’f ; »f/ <
L e s
§ SELASH
LA GE,
P £ L.Gadiﬂg.. , m;
. ¥ . f
5 it

STATUE BAR. CONTENTS AN CHANGE
Dt s VG START 4P OPT,0a AL,
CAN Grire »m ORE DeEToILED FEED Bach.

Figure 2: Splash screen user interface

2.1 Comparisons

Other authors and engineers have also published splash screen software in Java lan-
guage. See Colston|, Randelshoter, O’Hanley, Berthou, Gagnon. However, all these
implementations share one or more of the following disadvantages.

e Uses Java’s MediaTracker to load the image and thereby introduces delay in
loading the application as a whole. The thread waits for complete loading be-
fore proceeding with application start-up. This defeats the minimal overhead
requirement listed above, Section P.

e Uses Swing classes which take longer to load compared to simpler AWT. Ran-
delshofer argues this point very well.

e Does not include a status bar below the splash image. Hence there is no way to
report progress, assuming something to report!

This implementation overcomes all these disadvantages, as well as achieving simpler
implementation with less overhead.

2.2 Optional requirements

There are many splash screen implementations for Java. Those cited in the previous
section are only a handful. The various designs reflect subtle differences in require-
ments. Those differences step beyond the very basic requirements outlined in Sec-
tion P. For this reason, they might be called ‘optional” requirements. They boil down
to two behavioural features:

e displaying the splash screen for a minimum period of time;
e always displaying the splash screen regardless of start-up speed.

Both of these mitigate the requirement to minimise start-up delays. They introduce
extra delay unnecessarily. Arguably, this can be viewed as poor user interface design.
Derek Clarkson makes this point. News article reproduced with permission, see Ap-
pendix D. The balance of conflicting requirements should fall on the side of feedback,
a fundamental tenant of user interface design. At the point of intersection between
start-up completion and splash screen, the splash role changes from useful feedback
to cruft]. This is a personal view.

Assuming continuous increase of computer power, an application loading in three
seconds today might load in 300 milliseconds next year, then perhaps 3 milliseconds
in three years. This not wishful thinking. 64-bit architectures, dual cores, hyper-
threading and solid-state storage make this possibility far less than far-fetched. In real-
ity however, what hardware gives, software might take away, as Randelshofer rightly
points out. Notwithstanding, even today you can experience this phenomenon using

Thttp://www.hyperdictionary.com/computing/cruft

5

http://www.hyperdictionary.com/computing/cruft

older applications, those predating contemporary machines. The hard drive light goes
out long before the splash screen disappears. The artificial delay is obvious. This refers
to application loading not operating system booting which has increased in load time
along with its complexity. So do you really want to torment the user again and again?
He enjoyed the splash for the first 100 times, but now it irritates. Especially after the
upgrade; his new top-of-the-line workstation loads the application in exactly the same
time as the old one. How exasperating! Again, speaking from personal experience.

Nevertheless, the analysis adds these two design requirements as optional at de-
veloper’s discretion. They represent a pragmatic compromise based on others” dif-
fering design requirements. Certainly, a human-interfacing case exists for the first of
these, i.e. displaying for minimum time, for the purpose of avoiding splash screen
flash. Though not regardless of start-up speed. If the application is ready to roll before
the splash starts, this requirement does not imply waiting! The second requirement
to ‘always display the splash’” implies waiting. This fully compromises the original
mandatory design requirement.

3 Object-oriented design and implementation

3.1 Classes

See Figure [J. This diagram depicts the basic object classes.

SplashScreen java.awt

Image

Label

Frame

Figure 3: Basic class diagram, AWT user interface components on the right

Notice that SplashScreen does not inherit from Frame. This is a design decision.

6

Although programmers may think of it as a Frame, or Window, these are merely el-
ements of the splash screen’s composition and implementation. SplashScreen is a
separate and distinct concept. Inheriting from widgets also fails the “is a kind of” test,
e.g. relative to Frame. For example, you can add more contents to a Frame. You can
add a menu bar, turn the whole thing into an icon, and so forth. These are not appro-
priate SplashScreen behaviours, therefore SplashScreen is not a Frame or Window or
any such thing.

3.2 Associations

SplashScreen does have association with the Graphical User Interface classes, but not
inheritance. Figure @ depicts compositional associations.

java.awt

Image

SplashScreen

¢

Label

N/ _\1/

- Frame

Figure 4: Class diagram depicting composition associations

Therefore, using Java AWT, SplashScreen comprises one Image, one Label and one
Frame. The image and label appear together inside the frame. There could be other
implementations using different components. This is just one example using AWT.

3.3 Behaviours

Figure p draws the SplashScreen class with its basic methods added. Notice that
SplashScreen here assumes a default image, splash.gif for example. It does not
need telling which image unless it differs from the default. Nor have we given it a

7

® N G W N =

O ® N G e W N =

SplashScreen

+ splash() : void

+ dispose() : void

Figure 5: SplashScreen class with methods for splash and dispose

status bar message. Again it assumes a default, Loading... for example. Therefore
these two methods without arguments represent the simplest mode of operation. You

simply invoke SplashScreen.splash() at the start of main() and invoke SplashScreen.dispose()

at the end.
Here is an example.

public static void main(String[] args) {
SplashScreen splashScreen = new SplashScreen();
splashScreen.splash ();
/1
/1l
/1
splashScreen . dispose ();

}
Importantly, SplashScreen.splash() returns almost immediately. There is no delay
while waiting for the image to load; it all happens asynchronously. Therefore, normal
application start-up proceeds unabated.

3.3.1 Optional behaviours

See Section .2 concerning optional requirements. The design incorporates two mod-
ifications to the basic behaviour. The first meets optional requirement for minimum
splash duration. So if the splash screen is already up, it lasts for some minimum time
before disappearing. See outline below.
public static void main(String[] args) {

SplashScreen splashScreen = new SplashScreen();

splashScreen.splash ();

/1

/1

/1

splashScreen.splashFor(1000); // 1000ms=1s

splashScreen.dispose ();

}
This example adds splashFor(1000). If the splash screen is already displayed, it waits
for at most 1,000 milliseconds before returning. Note this means 1,000 milliseconds of
total splash! So, if already displayed for 1,000 milliseconds or more, the delay is 0. In
other words, it avoids flickering the splash on then off if the splash timing coincides

O ® N U e W N =

-
S)

with application start-up timing. This is a compromise between user feedback and
cruft. If the splash takes longer than start-up, it does not appear at all. If already
display for a fraction of the given time, the delay is only the remainder.
The second optional behaviour requires waiting for the splash before proceeding.
public static void main(String [] args) {

SplashScreen splashScreen = new SplashScreen();

splashScreen.splash ();

/1

/1

/11

splashScreen.waitForSplash ();

splashScreen.splashFor(1000);

splashScreen . dispose ();

}
The example adds waitForSplash. As a guide, invoke this method at the end of start-up,
not the beginning. Waiting for the image to load does not make the image load faster,
necessarily. Image loading is an ‘input bound” process, reading from filesystem or
network. Remaining start-up steps are typically ‘compute bound” and likely compute
resource is available for consumption. Most likely, start-up mixes input and compute
resource demands, and possibly even output.

This guideline applies to uniprocessor as well as multiprocessor platforms. Waiting
only wastes any available compute cycles. If you need to delay unnecessarily, do this
at the end when there is nothing left to do. Even so, this practice can be viewed as user
interface cruft! Please use with care.

3.4 Implementation

By realising (i.e. implementing) Java’s java.awt.image.ImageObserver interface, Splash-
Screen meets two simultaneous goals:

1. operates almost entirely asynchronously, so no appreciable application delay
while starting up and start-up speed remains unaffected by splash image size
or location;

2. if the application loads before the splash, the splash screen does not flash before
the eyes for a small fraction of a second, instead it sensibly skips the splash
screen.

See Figure f. New class diagram also includes +showStatus(s: String): void method
used for updating status bar contents.
Appendix [A lists the complete Java implementation.

4 Tests

Tests use Java’s System.currentTimeMillis() method for timing. See Appendix B listing
a simple class for marking points on the millisecond time axis and reporting elapsed

9

java.awt

<<Interface>>

ImageObserver

L

SplashScreen

+ splash() : void
+ dispose() : void
+ showStatus(s: String) : void

Figure 6: SplashScreen realises ImageObserver interface

intervals.
All test results use Java 2 Platform, Standard Edition SDK, version 1.4.1 running on
Linux.

4.1 Null test

1 class testl {

2 public static void main(String[] args) {

3 Time.mark (); // tO

4 System.out. println (Time.mark("tl._after.{0O}ms”));
5 System.out. println (Time.mark("t2_after.{0O}ms”));
6
7

}

Very simple test without splash screen, without anything except timing points.
This is the baseline. The timeline marks three points: ¢, when entering main(), ¢, at
the end just before leaving main() and ¢, falls somewhere in the middle. After adding
the splash screen, ¢, represents the transition point where splash screen start-up ends
and application start-up begins.

Compile and run gives:

tl after Oms
t2 after 29ms

10

4.2

4.3

Loop delay

O 0 N G ke W N e

e <
G R W N = o

class

}

test2 {
public static void main(String[] args) {

Time.mark (); // tO
System.out. println (Time.mark("tl._after.{0O}ms”));

for (int i =5; i >0;i-=-){//5,4,3,2,1

try {
Thread.sleep(1000);

catch (InterruptedException ie) {}

}

System.out. println (Time.mark("t2_after_.{0}ms”));

Loop with sleep delay emulates start-up activity. Five seconds of activity runs in-
between the two time marks, ¢; and ¢,. Still no splash screen.
Compile and run gives:

tl after Oms
t2 after 5,078ms

Simple splash

1 class test3 {

2 public static void main(String[] args) {

3 Time.mark (); // tO

4

5 SplashScreen splashScreen = new SplashScreen ();
6 splashScreen.splash ();

7

8 System.out. println (Time.mark("tl_.after_.{0}ms”));
9

10
11
12
13
14
15
16
17
18
19
20
21
22

for (int i =5; i >0; i--){//5, 4,3, 2,1
splashScreen.showStatus(Integer.toString (i) + "...”);
try {

Thread.sleep(1000);
}

catch (InterruptedException ie) {}

}

splashScreen . dispose ();

System.out. println (Time.mark("t2._after.{0O}ms”));

11

This test finally adds the splash screen. SplashScreen.splash() method runs be-
tween ¢, and t;. SplashScreen.dispose() runs just before ¢,. Results as follows. Notice
the change.

tl after 443ms
t2 after 5,077ms

Because it loads splash.gif from the filesystem, it loads quickly and the splash
screen appears before the first of the five count-down seconds elapses. Loading images
across a network usually takes longer. Subsequent tests will attempt this.

4.3.1 Conclusions

e Java AWT consumes about half a second just to create a new Frame instance.

e Disposing of the splash screen Frame takes no significant time.

4.4 Frame instantiation

class test4 {
public static void main(String [] args) {
Time.mark (); // tO
new java.awt.Frame();

System.out. println (Time.mark("tl._after.{O}ms”));

O P N U e W N =

}

Tests the previous conclusion from simple splash test, Section f.3. Does simple
Frame object instantiation really take about 500 milliseconds? Test gives:

tl after 424ms

It turns out that running the tests through a 100-megabit X Windows connection
adds 100 milliseconds to this delay. Running the tests on a direct terminal brings the
delay down to around 350ms.

44.1 Conclusions

e Previous conclusion confirmed, i.e. Java AWT consumes nearly half a second
just to create a new Frame instance.

e SplashScreen is not consuming time unnecessarily. This delay is the minimum.
It needs to construct a frame, although perhaps parallelising this step may be
possible as a future project.

12

4.5 Google splash

1 import java.net.x;

2

s class test5 {

4 public static void main(String[] args) {

5 Time.mark (); // tO

6

7 SplashScreen splashScreen = new SplashScreen ();
8 URL url = null;

9 try {

10 url = new URL(”http ://wwww. google.com/logos/newyear04. gif”);
11

12 catch (MalformedURLException mue) {}

13 splashScreen.setlmage(url);

14 splashScreen.splash ();

15

16 System.out. println (Time.mark("tl._after.{O}ms”));
17

18 for (int i =5; i >0;i—-—-){//5,4,3,2,1
19 splashScreen.showStatus (Integer.toString (i) + ”...");
20 try {

21 Thread.sleep(1000);

22 }

23 catch (InterruptedException ie) {}

24 }

25

2 splashScreen . dispose ();

27

28 System.out. printIn (Time.mark("t2_after_.{O}ms”));
29 }

0}

This test now loads the splash image from http://www.google.com/logos/
newyearO4.gif | through a 576-kilobit per second Internet connection. Naturally, this
takes longer to load, but will this affect ¢;? See below.

tl after 453ms
t2 after 5,093ms

No significant difference. However, it does take a second longer for the splash screen
to appear. In fact, the status bar reads 4... by the time it appears.

4.5.1 Conclusions

e Fully asynchronous image loading works.

e Application start-up can freely update the splash screen’s status bar before it
actually appears.

13

http://www.google.com/logos/newyear04.gif
http://www.google.com/logos/newyear04.gif

4.6 Randelshofer comparison

Adding time markers to Randelshofert ScreenWindow gives the following measure-
ments. Appendix [{ lists timing additions to MyAppSplash.java test source.

t1 after 1,536ms

t2 after 296ms
The delay between t, and t; becomes one-and-a-half seconds. This is the time it takes
to start the splash screen, or about three times as slow compared to SplashScreen.
Waiting for completed image load makes this long delay. It is also highly variable, de-
pending on connection bandwidth availability. Randelshoter] waits for image loading
before displaying the slash screen and before proceeding with application start-up. As
a consequence, the splash quickly flashes on the screen before disappearing again and
the application appears.

4.7 Slow splash

Discover what happens when things fail to go as expected!

import java.net.x;

1

2

s class test6 {

4 public static void main(String[] args) {

5 Time.mark (); // tO

6

7 SplashScreen splashScreen = new SplashScreen ();
8 URL url = null;

9 try {

10 url = new URL(”http ://www. google.com/logos/newyear04. gif”);
1 }

12 catch (MalformedURLException mue) {}

13 splashScreen.setlmage(url);

14 splashScreen.splash ();

15

16 System.out. println (Time.mark("tl._after.{0O}ms”));
17

18 ;

19

20 splashScreen.dispose ();

21

2 System.out. println (Time.mark("t2_after.{0O}ms”));
3 }

u }

The Google test from Section .5 is the basis of this first pathology test. However, by
removing the delay loop, the five-second delay drops to zero seconds! This simulates
fast application start-up versus long splash screen start-up.

tl after 457ms
t2 after 25ms
No application start-up delay, and the splash screen does not appear.

14

4.8 Multiple splashes

Not a serious idea. Flashing the splash screen by recreating it is not a requirement, but
it does validate the class clean-up logic, demonstrating its repeatability and therefore
to some extent its reliability. Think of it as a destruction test, like hitting it with a
hammer.

1 import java.net.x;

2

s class test7 {

4 public static void main(String [] args) {

5 Time.mark (); // tO

6

7 SplashScreen splashScreen = new SplashScreen();

8 URL url = null ;

9 try {

10 url = new URL("http ://wwww. google.com/logos/newyear04. gif”);
11

12 catch (MalformedURLException mue) {}

13 splashScreen.setlmage (url);

14 for (int repeats = 3; repeats > 0; repeats——) {

15 splashScreen.splash ();

16

17 System.out. println (Time.mark("tl._.after_{O}ms”));
18

19 for (int i =5; i >0; i-=-){//5,4,3,2,1
20 splashScreen.showStatus(Integer.toString (i) + "...");
21 try {

2 Thread.sleep(1000);

23 }

2 catch (InterruptedException ie) {}

25 }

26

27 splashScreen . dispose ();

28 }

29 System.out. println (Time.mark("t2._after.{0O}ms”));

30 }

a1}

This is the Google splash from Section .5 but repeated three times.

tl after 450ms

tl after 5,271ms
tl after 5,243ms
t2 after 5,046ms

It passes point t; three times, once for each splash iteration. Interestingly, note the re-
duced splash start-up delay on second and third iterations. It nearly halves to around
250ms! The reason? Java has already loaded the AWT classes.

15

4.9 Splash duration

1 import java.net.x;

2

s class test8 { // based on test6

4 public static void main(String [] args) {

5 Time.mark (); // tO

6

7 SplashScreen splashScreen = new SplashScreen ();
8 URL url = null ;

9 try {

10 url = new URL("http ://www.google.com/logos/newyear04. gif”);
11 }

12 catch (MalformedURLException mue) {}

13 splashScreen.setlmage(url);

14 splashScreen.splash ();

15

16 System.out. println (Time.mark("tl_.after_.{0}ms”));
17

18 y

19

20 splashScreen.splashFor(1000); // finish if started
21 splashScreen . dispose ();

22

3 System.out. println (Time.mark("t2._after.{0O}ms”));
2% }

5}

Based on Section .7, this example has no appreciable start-up delay. However, before
disposing the splash, it invokes splashFor(1000) on the SplashScreen instance. If the
splash screen is up, it will keep it up for one second in total by sleeping the caller’s
thread. But if not yet up, splashFor returns immediately and the test disposes the
splash screen. It gives the following output.

tl after 476ms
t2 after 26ms

No splash screen appears, and it reaches t; in only 26ms. Method splashFor returned
immediately because the splash screen was not yet displayed. This is correct be-
haviour for this part of the optional requirements.

16

410 Crufted splash

1 import java.net.x;

2

s class test9 { // based on test8

4 public static void main(String [] args) {

5 Time.mark (); // tO

6

7 SplashScreen splashScreen = new SplashScreen ();
8 URL url = null ;

9 try {

10 url = new URL("http ://www.google.com/logos/newyear04. gif”);
11 }

12 catch (MalformedURLException mue) {}

13 splashScreen.setlmage(url);

14 splashScreen.splash ();

15

16 System.out. println (Time.mark("tl_.after_.{0}ms”));
17

18 y

19

20 splashScreen.waitForSplash (); // cruft?

21 System.out. println (Time.mark("tla_.after_.{0}ms”));
2 splashScreen.splashFor(1000);

3 splashScreen.dispose ();

24

25 System.out. println (Time.mark("t2_after.{O}ms”));
2 }

7}

This test adds waitForSplash() before the splashFor(1000). It waits for the splash to
load and display first. Then it displays for one second. The test incorporates a new
timing test point, ¢,,. It marks the point of transition between waiting for the splash to
display and waiting for one second. Output as follows.

tl after 480ms
tla after 669ms
t2 after 1,021ms

These figures show that the splash image loads 669 milliseconds after starting. It then
waits for a further second before completing. Compared to previous test therefore, the
user waits about two seconds compared to half a second. In this worst case example,
crufted splash quadruples the application start-up time.

17

References

R. Berthou. Rbl java tips: A splash screen in java. http://www.javaside.com/
asp/mus.asp7’page=/us/tips/i_9.shtmi

Tony Colston. Java tip 104: Make a splash with swing. http://www.javaworld.
com/javaworid/javatips/jw-javatip104.htmi .

Waterwerks Pty Ltd Derek Clarkson. Re: A splash screen. news://comp.lang.
java.qui

Real Gagnon. Display a splash screen. http://www.rgagnon.com/javadetails/
java-0267.htmi

John O’Hanley. Collected java practices: Splash screen. http://www.
javapractices.com/Topic149.cjp

Werner Randelshofer. How to do a fast splash screen in java. http://www.
randeishofer.ch/oop/javaspiash/javaspiash.htmi

Acknowledgements

Thanks to Werner Randelshofer mailto:werner.randelshofer@bluewin.ch for
overseeing Apple Mac OS X platform debugging, including much constructive analy-
sis and warm encouragement.

18

http://www.javaside.com/asp/mus.asp?page=/us/tips/j_9.shtml
http://www.javaside.com/asp/mus.asp?page=/us/tips/j_9.shtml
http://www.javaworld.com/javaworld/javatips/jw-javatip104.html
http://www.javaworld.com/javaworld/javatips/jw-javatip104.html
news://comp.lang.java.gui
news://comp.lang.java.gui
http://www.rgagnon.com/javadetails/java-0267.html
http://www.rgagnon.com/javadetails/java-0267.html
http://www.javapractices.com/Topic149.cjp
http://www.javapractices.com/Topic149.cjp
http://www.randelshofer.ch/oop/javasplash/javasplash.html
http://www.randelshofer.ch/oop/javasplash/javasplash.html
mailto:werner.randelshofer@bluewin.ch

O ® N G e W N =

Gl R R R B A R R R R W W W W W W W W W RN NRNNN NN N S s s s s e s
S 6 &% U & &G B &K B S © ®» I & G & O R0 2 & 8 ® 9 6 Gk RN = S © ® 9 0 a & ® 0 = o

A SplashScreen.java

[

*+ @(#) SplashScreen.java 1.5 20—Jan—04

*

x Copyright (C) 2004, Roy Ratcliffe, Lancaster, United Kingdom.

x All rights reserved.

*

x This software is provided ‘‘as is’’ without warranty of any kind,
x either expressed or implied. Use at your own risk. Permission to
x use or copy this software is hereby granted without fee provided

x you always retain this copyright notice.

*/

import java.awt.x;
import java.awt.image.ImageObserver;
import java.net.URL;

/

*

start—up. Usage is straightforward: simply construct a

<h3>Example 1</h3>
<pre>
class splasherl {
public static void main(String [] args) {
SplashScreen splashScreen = new SplashScreen();
splashScreen.splash ();
for (int i = 10; i > 0; i——){
splashScreen.showStatus(Integer.toString (i) +

try {
Thread.sleep (1000);
}

catch (InterruptedException ie) {}

}

; I/ frame.show() <—— here
splashScreen.dispose ();
; I/ frame.show() <—— or here
¥
}
<lpre>

<h3>Example 2</h3>
<pre>
class splasher2 {
public static void main(String [] args) {
SplashScreen splashScreen = new SplashScreen();

XK KK K K K K K K K K K K K K K X X X K K XK X K X X X X X X % ¥

19

SplashScreen is a general-purpose splash screen for application

SplashScreen at the start of main() and call its splash () method.
Proceed with start—up as normal. Use showStatus(String) for
reporting progress during start—up. Finally, at the end of main()
call SplashScreen’s dispose () method. By default, the splash
loads image splash. gif but you can change this if necessary.

27

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

¥ O K K K X KKK XK KX K K K K K KK KKK K X KKK KKK KK KKK KKK KKK K KKK KK XK X XX

splashScreen.splash ();

try {
Thread.sleep (500);
}

catch (InterruptedException ie) {}
splashScreen.splashFor(1000); // discretion
splashScreen . dispose ();
}
}
<lpre>
Note following comments quoted from design documentation by R.R.
<blockquote>
This example adds splashFor(1000). |If the splash screen is
already displayed, it waits for at most 1000 milliseconds before
returning. Note this means 1000 milliseconds of total splash! So,
already displayed for 1000 milliseconds or more, the delay is O.
In other words, it avoids flickering the splash on then off if the
splash timing coincides with application start—up timing. This is
a compromise between user feedback and cruft. |If the splash takes
longer than start—up, it does not appear at all. If already
display for a fraction of the given time, the delay is
only the remainder.
</blockquote>

<h3>Example 3</h3>
<pre>
class splasher3 {
public static void main(String [] args) {
SplashScreen splashScreen = new SplashScreen ();
splashScreen.splash ();

try {
Thread.sleep (100);
}

catch (InterruptedException ie) {}
splashScreen.waitForSplash (); // cruft zone?
splashScreen.splashFor(1000);
splashScreen.dispose ();
}
}
<lpre>
This example adds waitForSplash. It waits for the splash screen

even though the application loads faster. Not recommended as some
users consider this bad practice.

<h3>Example 4</h3>
<pre>
class splasher4 {
public static void main(String [] args) {
SplashScreen.instance (). splash ();
SplashScreen.instance (). delayForSplash ();

try {
Thread.sleep(100);

20

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
1

'S

6
147
148
149
150
151
152
153
154

*
*
*
k
*
*
k
*
*
3
k
*
*
*
k
k
*
*
*
k
* In U.M.L. modelling terms, SplashScreen fulfils the following
k
*
*
*
3
*
*
*
*
k
*
k
%
*
k
*
k
*
*
*

}

catch (InterruptedException ie) {}
SplashScreen.instance (). splashFor(1000);
SplashScreen.instance (). dispose ();

}
}

<lpre>

This example demonstrates two new features of version 1.5
SplashScreen. Firstly, the Singleton pattern. Class—scoped method
instance () accesses the single SplashScreen instance. You can
therefore access this instance from anywhere.

<p>

Secondly, method delayForSplash () appears just after splash ().
This possibly delays the main thread, allowing the splash
screen to load and display. Tests on some uniprocessor platforms
show poor multi—threading performance. See Appendix F of design
documentation by R.R. The new method bases the extent of delay if
any on number of available computing resources.

<h3>Modelling </h3>

requirement depicted as a Use Case.

<p>

<p>

The sketch below outlines the user interface design.
<p>

<p>

To meet this requirement, the implementation uses the following
class design.

<p>

<p>

Or in full detail as follows.

<p>

<p>

@todo Add method or methods for adjusting background colours.
@author Roy Ratcliffe

* @version 1.5

x/

public class SplashScreen implements ImageObserver {

/1 Design decision.

/!l Choose delegation over inheritance. SplashScreen is not a
/!l Frame or a Window, or an Image for that matter; it is a

/1l concept. Frame and Image are its components.

/11

/1l Conceptually, the splash screen is an image with text

/! underneath: an image and a label in Java terms. The Frame

21

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

/1 is a somewhat more abstract software—engineering

Il entity.

/1

/!l Instantiate the label now and give default contents. Use

/1 method showStatus(s: String) to override the default. You can
/1 call this before splash (). Design feature.

private Image image;

private Label label = new Label("Loading...”, Label .CENTER);

private Frame frame;
private long splashTime = 0;

[+ %

x Constructs SplashScreen using a given filename for the splash image.

x @param filename name of an image file
*/
public SplashScreen(String filename) {
setimage (filename);
}

[% %
x Constructs SplashScreen using a given URL for the splash image.
x @param url the URL of an image
*/
public SplashScreen(URL url) {
setimage (url);
}

[%

x Constructs SplashScreen using filename "splash.gif” for the image
x unless you change the default using setlmage or call splash with an

x argument specifying a different image.

x/

public SplashScreen() {

}

[%%

x Uses the given filename for the splash image. This method

x calls Toolkit.getlmage which resolves multiple requests for
x the same filename to the same Image, unlike createlmage which
x creates a non-shared instance of Image. In other words,

x getlmage caches Images, createlmage does not. Use

*x <code>splash (createlmage(</code>... if you want Image privacy.
x @param filename name of an image file

*/

public void setlmage(String filename) {
image = Toolkit.getDefaultToolkit ().getimage(filename);
}

[%
x Uses the given URL for the splash image.
x @param url the URL of an image
x/
public void setlmage(URL url) {
image = Toolkit.getDefaultToolkit ().getimage(url);

22

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

}

[% *

x Starts the asynchronous splash screen using the given filename

« for the image.
x @param filename name of an image file

x/

public void splash(String filename) {
splash(Toolkit.getDefaultToolkit (). getlmage (filename));

}

IET:

x Starts the asynchronous splash screen using the given URL

x for the image.
x @param url the URL of an image
x/
public void splash(URL url) {
splash(Toolkit.getDefaultToolkit ().getlmage(url));
}

[+ %

x Starts the asynchronous splash screen using the previously

x specified image, or using filename ”splash.gif” by
x nNo image yet specified.
*/
public void splash() {
if (image != null) splash(image);

else splash(Toolkit.getDefaultToolkit ().getlmage(”splash.gif”));

~ ——

****%*****%***i

Actually, this method merely starts the process of
splashing. The splash screen will appear sometime
the splash image is ready for display.

image loading. The splash() method itself returns

as image loading completes.

@pre Do not double—splash! It creates waves! That
invoke splash () twice, not without calling dispose (

*

@param img the image used for splashing
*/

public void splash(lmage img) {

image = img;

frame = new Frame();

frame . setUndecorated (true);

if (! Toolkit.getDefaultToolkit (). preparelmage(image, —1, —1, this)) return ;

/1 Arriving here means the image is already fully

23

default if

Splash the screen! Or, in other words, make a splash!

later when

to the

caller as soon as possible. The screen appears later as soon

is, do not
) in—between.

loaded.

/1l async

Note that this splash screen implementation uses fully asynchronous

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

/1 The splash screen can proceed without delay.
splashScreen ();

}

[%

x Runs during image loading.
x This method does not run

x calls splash () and dispose ().
* splashScreen () and dispose () are <code>synchronized</code>.

*/

public boolean

Informs this

ImageObserver about progress.

in the main thread, i.e. the thread which

That is why methods

imageUpdate (Image img, int infoflags,
int x, int y, int

/1 debug...

/1
/1
/1
/1
/1
/1

System. err.println (”img=

width, int height) {

+ img +

",infoflags=" + infoflags +

JX=" X+
Y= Ay o+

", width=" + width +
", height=" + height);

/1 Return false if infoflags
/1 completely loaded; true otherwise.

boolean allbits = infoflags
if (allbits) splashScreen ();
return !allbits;

¥

[%%

Runs when the splash image is fully

*
*
x pieces.
k
*

@todo Animated splash screens!
so, implement animation support.

*

*/

private synchronized void

indicate that the image is

splashScreen () {

ImageObserver.ALLBITS;

loaded, all its bits and

Is there a requirement? If

/! Which thread runs this method? One of two: either the

/! main thread

/1 image loader thread.
if (frame

final
final

/1 'Why use a Canvas?

int
int

== null) return ;

width = image.getWidth(null);
height = image.getHeight(null);

It allows packing.

if the image has already loaded, or Java’s

This way, AWT’s

/! normal packing mechanism handles the sizing and layout.
Canvas canvas = new Canvas ()

/1
/1
/1
/1
/11
1
/1

{

Fix thanks to Werner Randelshofer as follows.
Canvas class’ update(g) method first clears then
Its superclass, Component, only

invokes paint(g).
calls paint(g).

Just paint,

not clear! Clearing

first unhappily creates flicker. The following
override reverts to the super—superclass behaviour

of Component.

24

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

}

[%
x Changes the status message just below the image. Use it to
x display start—up progress.

x/

public void sho

label.setText(s);

}
/

*
*
*
*
*
*
*
*

*

public void update(Graphics g) {

paint(g);

public void paint(Graphics g) {

}
/1

I
/1
/1
/1
/1
/11
/11
/1
/1
Il
/1
I

g.drawlmage (image, 0, 0, this);

Fixed for Mac OS X, also thanks to Werner.

Werner’'s kind testing on Apple’s JVM reveals an
important and subtle difference versus Sun’s Java for
Linux. Under Linux, Component.setSize () alters the
Canvas ‘‘preferred size'' and therefore affects
layout. Under Mac OS X, it does not. Actually,
reviewing Component.java source reveals that
preferredSize () dependency is complex, depending on
prefSize attribute if set and Component isValid, or
otherwise depends on Component peer, or finally the
“‘minimum size '’ if no peer yet. Werner’'s solution
seems advisable therefore: override
getPreferredSize () method.

public Dimension getPreferredSize () {

}
s

frame .add(c

return new Dimension(width, height);

anvas, BorderLayout.CENTER);

frame.add(label, BorderLayout.SOUTH);

frame . pack (

Dimension s

)

creenSize = Toolkit.getDefaultToolkit (). getScreenSize ();

Dimension frameSize = frame.getSize ();

frame. setLo

frame . show (
splashTime

cation ((screenSize.width — frameSize.width) >> 1, // /2
(screenSize.height — frameSize.height) >> 1); // /2

)

= System.currentTimeMillis ();

wStatus (String s) {

Waits for the splash screen to load, returns when the splash

starts. The

wait is indefinite if necessary. The operation

returns immediately if the splash image has already loaded.

<p>

Please note
documentatio
<blockquote>

following discussion taken from design
n by R.R.

25

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

407
408
409
410
411
412
413
414

need to delay unnecessarily, do this at the end when there is nothing
left to do. Even so, this practice can be viewed as user interface
cruft! Please use with care.

</blockquote>

x As a guide, invoke this method at the end of start—up, not the
x beginning. Waiting for the image to load does not make the image load
« faster, necessarily. |Image loading is an ‘input bound’ process,

x reading from filesystem or network. Remaining start—up steps are

x typically ‘compute bound’ and likely compute resource is available for
x consumption. Most likely, start—up mixes input and compute resource
x demands, and possibly even output.

* <p>

x This guideline applies to uniprocessor as well as multiprocessor

x platforms. Waiting only wastes any available compute cycles. If you
*

*

*

*

*/

public void waitForSplash () {
MediaTracker mt = new MediaTracker(frame);
mt.addlmage (image, 0);

try {
mt. waitForID (0);
}

catch (InterruptedException ie) {}

/1 assert splashTime!=0
}
[+ %
x Waits for the splash screen to load for a limited amount of
x time. Method returns when the splash has loaded, or when the
x given time limit expires.
* @param ms milliseconds to wait for
x/
public void waitForSplash(long ms) {

MediaTracker mt = new MediaTracker(frame);

mt.addlmage (image, 0);

try {

mt. waitForlID (0, ms);
¥

catch (InterruptedException ie) {}
/1 assert splashTime!=0

}

[%%

x Optimise splash latency by delaying the calling thread

x according to number of processors available. Multiprocessor
x platforms successfully load the splash image in parallel with
x low overhead. Uniprocessors struggle however! This method
x offers compromise. It delays indefinitely with one
x processor, same as waitForSplash (); however, it returns

x immediately with four our more processors thereby maximising
x parallel execution; or waits for 500 milliseconds at most with
x dual processors. Call delayForSplash() in place of

x waitForSplash ().

x/

public void delayForSplash() {

26

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

434
435
436
437

439
440
441
442
443
444
445
446
447
448
449
450
451
452

454
455
456
457

459
460
461
462
463
464
465
466

}
/

int cpus = Runtime.getRuntime (). availableProcessors ();
switch (cpus) {
case 0: // pathology!
case 1:
waitForSplash ();
break ;
case 2:
case 3: /] ?
waitForSplash (1000 / cpus);
}

* %k
x Splashes the screen for at least the given number of
x milliseconds if, and only if, the splash screen has already

x loaded. If not already splashed, the method returns

x immediately. Invoke this method before disposing if you want
x to force a minimum splash period.

* <p>

* Why is this method <code>synchronized</code>? In order to

x avoid a race condition. It accesses the splashTime attribute
« which updates in another thread.

x @param ms milliseconds of minimum splash

x @pre The argument is greater than zero.

*

You already called splash.
x/

public synchronized void splashFor(int ms) {

~ ——

X ¥ XK X X ¥ % ox % x ¥

if (splashTime == 0) return ;

long splashDuration = System.currentTimeMillis() — splashTime;
/1 What time does System.currentTimeMillis measure? Real

/1l time, process time, or perhaps thread time? If real time,
/1 the following sleep duration inaccurately represents the
/1 remaining delay. This process could switch out at any

/!l point in—between sampling the time and sleeping, and

/1 thereby add to the existing delay! Ignored for now.

if (splashDuration < ms)

try {
Thread.sleep(ms — splashDuration);
}

catch (InterruptedException ie) {}

*

Closes the splash screen if open, or abandons splash screen if
not already open. Relatively long image loading delays the
opening. Call this method at the end of program start—up,
i.e. typically at the end of main ().

<p>

Implementation note.

If you dispose too fast, this method could coincide with
splashScreen (). We cannot now preempt the other thread. It
needs synchronisation. This situation and its requirement
proves inevitable when two threads access the same thing. For

27

this reason, methods dispose () and splashScreen () share the
<code>synchronized</code> attribute.

¥ ¥ ¥ %

@pre Assumes previous invocation of splash (). Do not dispose
before the splash!

*

*/
public synchronized void dispose () {
/1 Of course, it is conceivable though unlikely that the
/1 frame may not really exist before disposing. For example,
/1 if the splash phase of intialisation runs very quickly.
/1 Two splash cycles in a row? Remove the label ready for
/1 the next iteration. Not a requirement but pathologically safe.
frame.remove(label);
frame . dispose ();
frame = null ;
splashTime = 0;

}

private static SplashScreen singleton = null ;
[% %

*

Ensures the class has only one instance and gives a global
point of access to it. The Singleton pattern avoids using
global variables. Instead, the class itself references the
single instance using a class—scoped variable, static
in Java terms.

<p>

The implementation actually mixes singleton and non-—singleton
patterns. (Tempting to call it Multiton but that refers to a
variation of Singleton where the instance has many
multiplicity instead of unity.) Correctly applying the
Singleton pattern requires closing access to constructor
methods. However, SplashScreen retains public constructors, so
compromises the pattern. You can follow Singleton usage or
not at your own discretion.

KK K K K X X X X K X X ¥ ¥

*

@return singleton SplashScreen instance

x/

/1 See Double—checked locking and the Singleton pattern

/1 http ://www—106.ibm.com/developerworks/java/library/j—dcl. html?dwzone=java
public static synchronized SplashScreen instance () {

if (null == singleton) singleton = new SplashScreen();

return singleton;

509
510
511

© ® N G oA W N =

=
= o

12

B

/

¥ K ¥ X ¥ ox % ¥ ox ¥

*
~

Time.java

@(#)Time.java 1.2 18—Jan—-04

Copyright (C) 2004, Roy Ratcliffe, Lancaster, United Kingdom.
All rights reserved.

This software is provided ‘‘as is’'’ without warranty of any kind,
either expressed or implied. Use at your own risk. Permission to
use or copy this software is hereby granted without fee provided

you always retain this copyright notice.

import java.text.MessageFormat;

class Time {

static long t = 0;
static long mark() {
long now = System.currentTimeMillis ();
long ms = now — t;
t = now;
return ms;
}
static String mark(String pattern) {
long ms = mark();
Object[] args = {new Long(ms), new Double(ms / 1000.0)};
return new MessageFormat(pattern).format(args);
}
static long at() {
long now = System.currentTimeMillis ();
long ms = now — t;
return ms;
}
static String at(String pattern) {
long ms = at();
Object[] args = {new Long(ms), new Double(ms / 1000.0)};
return new MessageFormat(pattern).format(args);

29

C MyAppSplash.java differences

Fhkkkkkkkkkkkkk

*kk 24’29 *kkk
--- 24,30 ----
*/
public class MyAppSplash extends Object {
public static void main(String[] args) {
+ Time.mark();
/I NOTE: The splash window should appear as early as possible.
" The code provided here uses Reflection to avoid time
I consuming class loading before the splash window is

Fhkkkkkkkkkkkkk

*kk 35 41 *kkk

/I TO DO: Replace ’splash.gif’ with the file name of your splash image.
Frame splashFrame = null;
! URL imageURL = MyAppSplash.class.getResource("splash.gif");
if (imageURL != null) {
splashFrame = SplashWindow.splash(
Toolkit.getDefaultToolkit().createlImage(imageURL)
--- 36,46 ----

/I TO DO: Replace ’splash.gif’ with the file name of your splash image.
Frame splashFrame = null;
URL imageURL = null;

try {
imageURL = new URL("http://www.google.com/logos/newyear04.gif");

catch (java.net.MalformedURLException mue) {}
if (imageURL != null) {
splashFrame = SplashWindow.splash(
Toolkit.getDefaultToolkit().createlmage(imageURL)
K*kkkkkkkkkkkkkk
*kk 56,61 *kkk
--- 61,67 ---

/I TO DO: Replace 'MyApp’' with the fully qualified class
/I name of your application.
+ System.out.printin(Time.mark("t1 after {0}ms"));
try {
Class.forName("MyApp")
.getMethod("main”, new Class[] {String[].class})

*kkkhkkkkkkkkkk

*kk QT3 kA

--- 75,80 ---
/I Dispose the splash window by disposing its parent frame
I
if (splashFrame != null) splashFrame.dispose();
+ System.out.printin(Time.mark("t2 after {0}ms"));
}

30

D Derek Clarkson’s comp.lang.java.gui article

Path:
news.dial.pipex.com!bnewshfeed00.bru.ops.eu.uu.net!master.news.eu.uu.net!bn
ewsspool00.bru.ops.eu.uu.net!lbnewsinpeer01.bru.ops.eu.uu.netlemea.uu.net!fe
ed.news.tiscali.de!newsfeed.vmunix.org!news1.optus.net.auloptus!news.mel.co
nnect.com.au!news.syd.connect.com.au!mail.netspeed.com.au!not-for-mail

From: Derek Clarkson <nonsupplied@nospam.com.au>

Newsgroups:
comp.lang.java.gui,comp.lang.java.help,comp.lang.java.programmer

Subject: Re: A splash screen

Followup-To: comp.lang.java.gui

Date: Tue, 16 Dec 2003 10:08:11 +1100

Organization: Waterwerks Pty Ltd

Lines: 34

Message-ID: <3fde3f66@mail.netspeed.com.au>

References: <3fdcfala@rpc1284.daytonoh.ncr.com>

NNTP-Posting-Host: 203.31.48.12

X-Trace: merki.connect.com.au 1071529844 5307 203.31.48.12 (15 Dec 2003
23:10:44 GMT)

X-Complaints-To: abuse@connect.com.au

NNTP-Posting-Date: 15 Dec 2003 23:10:44 GMT

User-Agent: KNode/0.7.2

X-Original-NNTP-Posting-Host: 210.9.231.227

X-Original-Trace: 16 Dec 2003 10:10:30 +1100, 210.9.231.227

Xref: news.dial.pipex.com comp.lang.java.gui:123864
comp.lang.java.help:225275 comp.lang.java.programmer:624749

MIME-Version: 1.0

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7Bit

Hi,

| would suggest that having a timed splash screen is not a good idea. | know
that there are a number of products which do this, but | consider it to be
generally not good. The reasons is that quite often a user is starting an
application in order to do something specific. l.e. it might be started in
response to an association on a file or the user might want to quickly

start it, modify a piece of information and then exit. These sorts of

situations are where users get frustrated with applications which take a

long time to start.

Having a splash screen which is sitting in front of them and not assisting
in what they are doing is only going to increase any such annoyance.
Especially if they can see that the application is up and ready behind it
and they can't get to it.

You can add a "close" button to the splash screen but then you are asking
users to perform an additional task in order to use your application. Again
they won't like it.

cruft like splash screens is a great way to make an application look

"pretty”, but if they get in the way of the user in any way shape or form,
then you run the risk of the user going somewhere else. Remember, the main
job of any application is to perform a task for the user. Cruft should

never get in the way of this.

If your not convinced by these thoughts, | would suggest you doing some
ready on programs and user interaction. An especially good one that came
out recently was Eric S Raymonds “the Art of Unix Programming" which
highlights a lot of issues in regard to well behaved programs.

cio
Derek

31

N

© ® N G ke W N =

E Asynchronous load timing experiment

This small experiment aims to discover the practical benefit of asynchronously loading
and displaying splash screens without first waiting, assuming benefit exists at all. The
design of SplashScreen assumes that freeing the main thread for normal application
start-up takes advantage of input-bound image loading. It separates loading from the
more compute-bound start-up. Both run in separate threads of execution. Hypothet-
ically, not waiting for complete image load before proceeding does not significantly
affect image loading speed and therefore splash timing. Such is the design’s theory,
but how about the practice?

E.1 Method

The experiment method incorporates uniprocessor and multiprocessor systems. We
can expect difference certainly, but because image loading depends on input resource
not computing resource (meaning C.P.U.) the difference should not be significant, the-
oretically.

The test comprises two small Java programs, listings follow. Both measure elapsed
time between entering main() and showing the splash. ‘Showing splash’ refers to en-
tering the paint(Graphics) method. However, the second test waits for image loading,
the first does not.

Both tests use SplashScreen version 1.3 of 6th January 2004. It differs only by a
printin statement on entering paint. The new Canvas.paint(Graphics) method override

reads:
public void paint(Graphics g) {
System.out. println (Time.mark("tla_.after.{O}ms”));
g.drawlmage (image, 0, 0, this);

}

The experiment plots three test points:
e ¢, marks the starting point of a simulated 500-millisecond start-up activity;
e 1, marks the image paint entry-point, as above;

e t, marks the point of splash dispose.

E.1.1 Test program 1

class asyncl {
public static void main(String [] args) {
Time.mark (); // t0
SplashScreen splashScreen = new SplashScreen();
splashScreen.splash ();
System.out. printIn (Time.mark("tl._after.{O}ms”));

try {
Thread.sleep(500);
}

32

10
11
12
13
14
15

© ® N G oA W N =

e Y
G ke W N = O

}

catch (InterruptedException ie) {}
splashScreen.splashFor(1000);

System.out. println (Time.mark("t2._.after_{0}ms”));
splashScreen . dispose ();

Calling Thread.sleep(500) simulates 500-milliseconds of start-up activity.
E.1.2 Test program 2

class async2 {
public static void main(String [] args) {

}

Time.mark (); // tO

SplashScreen splashScreen = new SplashScreen();
splashScreen.splash ();
splashScreen.waitForSplash (); // does it speed up?
System.out. println (Time.mark("tl._after.{0O}ms”));

try {
Thread.sleep (500);
}

catch (InterruptedException ie) {}
splashScreen.splashFor(1000);

System.out. printIn (Time.mark("t2_after.{0O}ms"”));
splashScreen . dispose ();

Adds one new statement: wait for image loading using a MediaTracker before re-
suming normal start-up activity. Does this speed up the splash screen?

E.2 Results

Two platforms both running Java 2 SDK version 1.4.1:

e uniprocessor running Windows NT 4.0 (Service Pack 6a);

e dual SMP multiprocessor running Linux x86.

Both platforms load the splash image from their local filesystem, NTFS and XFS re-
spectively.
The two tests run ten times each for each platform. Results compare the average

timings.

E.2.1 Uniprocessor NT

First test without waitForSplash() gives output as:

tl after 901ms
tla after 411ms
t2 after 981ms
tl after 891ms
tla after 411ms

33

t2 after 981ms
tl after 891ms
tla after 411ms
t2 after 981ms
tl after 901ms
tla after 411ms
t2 after 981ms
tl after 891ms
tla after 411ms
t2 after 981ms
tl after 912ms
tla after 410ms
t2 after 972ms
tl after 892ms
tla after 410ms
t2 after 982ms
tl after 891ms
tla after 420ms
t2 after 982ms
tl after 891ms
tla after 411ms
t2 after 981ms
tl after 891ms
tla after 421ms
t2 after 981ms

Average time points, millisecond units:

|t | B
§952 | 412.7 | 980.3

In summary, 895.2ms elapses before application start-up can begin. 412.7ms later the
splash screen paints itself asynchronously. That is, during normal start-up activity but
in another thread of execution. It disappears nearly a second later.

Second test with waitForSplash() gives:

tla after 40ms
tl after 2,053ms
tla after 631ms
t2 after 330ms
tla after 1,322ms
tl after 60ms

t2 after 921ms
tla after 1,252ms
tl after 60ms

34

t2 after 921ms
tla after 1,242ms
tl after 60ms
t2 after 931ms
tla after 1,262ms
tl after 60ms
t2 after 922ms
tla after 1,252ms
tl after 60ms
t2 after 922ms
tla after 1,262ms
tl after 60ms
t2 after 912ms
tla after 20ms
tl after 1,252ms
t2 after 962ms
tla after 20ms
tl after 1,251ms
t2 after 962ms
tla after 20ms
tl after 1,242ms
t2 after 961ms

Because of the wait for splash, the paint event ¢;, occurs before the start-up activity
begins ¢;. Sometimes an initial pre-paint makes two t;, points, as in the first case
above. The typical sequence of events goes t;, paint, t; start-up begins, ¢, ready to
dispose. The waitForSplash() forces the paint to the start. Average times, excluding
double-paint figures:

te |t]|t
1265.33 | 60 | 934.889

Compare with the previous results. Time to splash painting of 1265.33ms versus
895.2 + 412.7 = 1307.9ms, a small difference of only 42.57ms faster when waiting on a
uniprocessor.

Also note that because of the wait, the second test takes 370.13ms longer before
start-up can begin. That adds 370ms of wasted C.P.U. cycles.

E.2.2 Dual-processor Linux

The first test program gives:

tl after 455ms
tla after 364ms
tla after 11ms

35

t2 after 1,008ms
tl after 456ms
tla after 354ms
tla after 17ms
t2 after 1,011ms
tl after 455ms
tla after 373ms
tla after 8ms
t2 after 1,012ms
tl after 446ms
tla after 336ms
t2 after 1,296ms
tl after 461ms
tla after 379ms
tla after 14ms
t2 after 1,013ms

Firstly, again notice the multiple ¢, test points. For reasons unexplained at present,
Sun’s Linux JVM calls paint(Graphics) twice in quick succession. It does not affect the
experiment. We take the final paint as point ¢;,. Averages excluding outliers:

| bt | B
454.6 ‘ 361.2 ‘ 1011

So splash occurs 454.6 + 361.2 = 815.8ms after entering main. The second half of this
period of 361.2ms runs asynchronously with normal start-up.
Second test program gives:

tl after 16ms
tla after 814ms
tla after 12ms
t2 after 1,007ms
tla after 842ms
tl after 19ms
tla after éms
t2 after 1,010ms
tla after 827ms
tla after 20ms
tl after 5ms

t2 after 995ms
tla after 816ms
tl after 7ms
tla after 20ms
t2 after 995ms
tla after 790ms

36

tl after 4ms
tla after 23ms
t2 after 991ms
tla after 791ms
tl after 4ms
tla after 23ms
t2 after 990ms
tl after 4ms
tla after 827ms
tla after 22ms
t2 after 996ms
tla after 767ms
tl after 27ms
tla after 4ms
t2 after 1,010ms
tla after 805ms
tl after 14ms
tla after 12ms
t2 after 1,007ms
tla after 816ms
tl after 15ms
tla after 10ms
t2 after 1,006ms

Therefore on average ignoring outliers:

te | 61 | B
809.5 | 18.2 | 1008

Compare image loading delay with previous result. Now 809.5ms, or 815.8 — 809.5 =
6.3ms faster when waiting.

E.3 Conclusion

In conclusion, waiting for the splash does not significantly speed up the time before it
appears. Loading and displaying asynchronously is therefore advantageous because
it frees the main thread for normal start-up activity.

Of course, these tests do not use highly compute-bound start-up simulation. If
they did, this might subtract cycles from the asynchronous splash activity and delay
it somewhat, especially on uniprocessor platforms. However, start-up might typically
mix compute and input-output bound activities. Therefore we can reasonably assume
the SplashScreen implementation successfully meets its requirement for minimum
start-up delay even without waiting using waitForSplash() at the start.

Range of platforms is a limitation of these tests. It includes Windows and Linux,
single and dual processors, but excludes non-Intel platforms.

37

F Follow-on load timing experiment

The first load timing experiment had shortcomings. First, it uses thread sleeping to
simulate start-up activity. Clearly, this is unrealistic. Application start-up invariably
comprises frenetic activity, busily consuming computing resources. Second, it does not
adequately explore ranges of activity. How does splash versus start-up performance
vary according to differing requirements and usage? Start-up can vary in complexity.
How does performance react? The performance profile could tell much about overall
performance.

Important questions remain unresolved. For example, should application software
wait for the splash screen before proceeding? Does asynchronous splashing give an
advantage? Possibly yes but only when assuming splash is mainly an input-bound
activity. It involves locating and loading the image. Whether from network or filesys-
tem, location and load depends on input bottlenecks mainly. Typically, computing
resource far exceeds it, and therefore a large chunk of processing bandwidth lies wait-
ing. Splashing asynchronously releases this available bandwidth. Well, such is the
hypothesis! At some point in time, the image appears in main memory. When com-
pletely loaded, the graphics subsystem can render the splash screen. Meanwhile, the
C.P.U. can carry some computing load. Any advantage assumes a computing load re-
quirement exists. If the entire start-up depends on input- or output-bound steps, no
substantial advantage exists unless an earlier request results in earlier delivery. On the
other hand, no substantial disadvantage must arise from parallel execution.

F1 Method

The experiment simulates compute-bound start-up using a ‘simple” loop, see example
below. The loop iterates an integer 7 = 0...n — 1.

int n;

long y = 0;

for (int 1 = 0; i < n; i++)

y += Integer.parselnt(”"1000000");

The loop parses a string and sums the result to make the loop more substantial. Proces-
sors normally handle integer loops very quickly. In fact, optimisers can cleverly skip
null-body loops. Parsing and summing circumvents optimisation and increases the
duration of each iteration. Parsing the same number makes computational demand
increase with n linearly. The result y equals 1,000,000 x n but hopefully optimisations
if any will not spot that!

This loop stands for the entire start-up activity. The experiment analyses the start
and end of this activity, called ¢; and ¢,. Application ‘start-up latency’ corresponds to
to. This is the earliest point at which the application can actually begin. A frame.show()
operation would normally appear at this point, and the user sees the final result of
his application start-up request for the first time. Time ¢;, marks the point in time
when the splash screen appears for the first time. This point measures ‘splash latency.’
Figure [] plots two time-lines, one each for the two threads of activity. Point ¢, marks

38

L S -
>

Figure 7: Main t, and image loader ¢ thread time-lines

the time origin: the point just before requesting a splash. It takes some time before
Java reaches this point, however it is common to all Java software. The operating
system must load the virtual machine, load the necessary initial classes and execute the
initial threads. Therefore, assuming classes load on demand, measuring from previous
points in time only offsets the results. The experiment can ignore this initial loading
time constant.

Small addition to version 1.4 of SplashScreen.java signals the ¢, point. Dif-
ference as follows:

*k%k 2851290 *kkk

--- 285,291 ----
paint(g);
}
public void paint(Graphics g) {
+ TimeSac.instance().t("t1a");
g.drawlmage(image, 0, 0, this);
}

/I Fixed for Mac OS X, also thanks to Werner.

F1.1 Platforms

Two platforms hopefully representing different ends of the contemporary 32-bit Intel-
based workstation spectrum.

Linux workstation Dual hyper-threading (four logical processors) Intel Xeon 3GHz
(Intel family 15, model 2, stepping 7). SMP motherboard equipping 1GB DDR dual-
channel memory. Gentoo Linux operating system running JDK version 1.4.1, Black-
down’s port.

NT workstation Intel Pentium II (family 6, model 5, stepping 1) uniprocessor at
300MHz, equipped with 64MB RAM. Microsoft Windows NT 4.0 workstation oper-
ating system with Service Pack 6a, build 1381, running Java 2 runtime environment,
standard edition, version 1.4.1 from Sun Microsystems. This system stretches the def-
inition of ‘contemporary.” Perhaps ‘legacy’ would better describe it.

39

© ® N G oA W N =

B R B R s R e) W W W 0 W W W RN RNNNRNNNRN N s s e s s e s s
L ® 9 & G k& W R =B SO 0V »®» 93 T EFE DN R SO XN A E 0N R S Y ® N0 U kR ® N R O

F1.2 Software

The Java test program,

async3.java

/!l Parse command-line arguments using gnu.getopt.Getopt, downloaded from

/1 ftp :// ftp.urbanophile.com/pub/arenn/software/sources/java—getopt—1.0.9.jar
/1 Compile and execute using class path of —cp java—getopt—1.0.9.jar:.

import gnu.getopt.Getopt;

class async3 {

public static void main(String][]

args) {

Getopt g = new Getopt(”async3”, args, "t:l:p:wx");
String time_sac = "time.sac”; // filename of persistent TimeSac
String In_start = "”; // line start string, see —X

boolean wait_for_splash = false ; // wait for splash

boolean xtract_statslst

false ; // extract stats 1st

int c;
while ((c = g.getopt()) != —-1)
switch (c) {
case 't’:
time_sac = g.getOptarg();
break ;
case I’
In_start = g.getOptarg ();
break ;
case 'p’:
Thread. currentThread (). setPriority (Integer.parselnt(g.getOptarg()));
break ;
case 'w':
wait_for_splash = true;
break ;
case ’'x':
xtract_statslst = true;
}

TimeSac. instance ().load (time_sac);
if (xtract_statslst) {
java. util . Iterator it =

while (i

t.hasNext()) {

TimeSac. instance (). iterator ();

java. util .Map. Entry me = (java.util .Map.Entry)it.next();
StatisticalAccumulator sac = (StatisticalAccumulator)me.getValue ();
if (In_start.length() !'= 0) System.out.print(ln_start);

System.out. printlin (me.getKey () +

}
}

"," + sac.
sac.
sac
sac.
, sac.

+ + + +

n(+

min() +

.max() +

average () +
stDev ());

if (g.getOptind() == args.length) System.exit(0);
int n = Integer.parselnt(args[g.getOptind ()]);

Time.mark () ;

!/l <—— t0 now

40

50
51
52
53
54
55
56
57
58
59
60
61
62
63

SplashScreen.instance (). splash ();
if (wait_for_splash)
SplashScreen.instance (). waitForSplash ();

TimeSac.instance (). t("tl”);
long y = 0;
for (int 1 =0; i < n; i++)
y += Integer.parselnt(”"1000000");
TimeSac. instance (). t("t2");

TimeSac. instance ().save(time_sac);
SplashScreen.instance (). dispose ();

}
}

The program’s command-line argument specifies the number of required start-up loop
iterations. For example

java async3 1000000

requests a million loop iterations. Meanwhile the splash screen loads asynchronously
via the filesystem. Adding the -w option makes the test program wait for the image
load, i.e. uses a MediaTracker before entering the start-up loop. For example

java async3 -w 1000000

waits for the splash, then runs one million loop iterations.

The experiment makes use of classes StatisticalAccumulator and TimeSac. See list-
ings in Appendices [and [H. Used together, they accumulate timing statistics.

The Linux box uses the following bash shell script. It accumulates timing statistics
for iterations between 0 and 10,000,000 in steps of 1,000,000.

x=0
while [$x -It 10000000]
do
rm -f timesac$x
i=0
while [$i -It 10]
do
java -cp java-getopt-1.0.9.jar:. async3 -t timesac$x $@ $x
i='expr $i + 1
done
java -cp java-getopt-1.0.9.jar.. async3 -t timesac$x -l $x, -x
x=‘expr $x + 1000000°
done

Note: for the Windows NT workstation, the class path must become

-cp "java-getopt-1.0.9.jar;."

41

because Windows uses semicolon to separate paths.
The following bash command runs the asynchronous experiment.

sh async3.sh | tee async3.out
This one runs the synchronous experiment. Option -w introduces the wait for splash.

sh async3.sh -w | tee async3.out-w

E2 Results
F2.1 Linux workstation

Linux results see Figures B through [[(. Raw output looks like this for asynchronous
splash:

0,t1,10,153.0,159.0,155.2,1.9321835661585918
0,t2,10,153.0,159.0,155.3,2.057506581601462
1000000,t1a,10,312.0,367.0,331.1,16.9865960228777
1000000,t1,10,152.0,185.0,157.8,9.795690662508466
1000000,t2,10,440.0,489.0,458.3,14.952145888355513
2000000,t1a,10,309.0,355.0,331.0,16.478942792411033
2000000,t1,10,152.0,160.0,154.6,3.1340424729448424
2000000,t2,10,693.0,1044.0,741.7,106.8082913968345
3000000,t1a,10,309.0,367.0,324.7,18.720458209017096
3000000,t1,10,152.0,168.0,154.5,4.904646323187388
3000000,t2,10,947.0,1011.0,965.6,19.466210040306596
4000000,t1a,10,316.0,347.0,330.4,12.851286144022923
4000000,11,10,154.0,157.0,155.8,1.1352924243950935
4000000,t2,10,1212.0,1755.0,1278.9,167.58841779125962
5000000,t1a,10,306.0,344.0,320.9,14.563653387/800741
5000000,t1,10,152.0,157.0,154.7,1.636391694484477
5000000,t2,10,1456.0,1493.0,1470.9,14.216187955988763
6000000,t1a,10,311.0,386.0,325.8,22.59695161348588
6000000,t1,10,152.0,193.0,157.8,12.497110777206776
6000000,t2,10,1719.0,1782.0,1733.9,18.44782432218559
7000000,t1a,10,307.0,356.0,329.2,15.7395467956 77864
7000000,t1,10,152.0,179.0,156.1,8.171087238958268
7000000,t2,10,1975.0,2017.0,1992.5,14.983324063771697
8000000,t1a,10,307.0,335.0,322.5,11.007573150638912
8000000,t1,10,152.0,156.0,153.8,1.6193277068654826
8000000,t2,10,2226.0,2247.0,2238.4,8.934328302800509
9000000,t1a,10,309.0,371.0,328.1,18.33303030052588
9000000,t1,10,154.0,186.0,159.2,9.600925881277169
9000000,t2,10,2487.0,2542.0,2504.2,16.55831446065021

42

The columns contain loop iterations, measurement, samples accumulated, minimum
elapsed time from ¢, in millisecond units, maximum time, average and standard devi-
ation. For synchronous splash, raw output is:

0,t1a,1,308.0,308.0,308.0,NaN
0,t1,10,287.0,360.0,303.6,29.549205667082756
0,t2,10,287.0,360.0,303.8,29.430898351524675
1000000,t1a,10,304.0,346.0,313.9,15.132378824523554
1000000,t1,10,286.0,329.0,296.6,15.042162965034871
1000000,t2,10,564.0,607.0,575.5,14.615440845595836
2000000,t1a,10,304.0,311.0,307.8,2.250925735484551
2000000,t1,10,285.0,294.0,290.0,2.211083193570267
2000000,t2,10,821.0,836.0,826.2,4.4671641514002545
3000000,t1a,10,301.0,393.0,315.3,27.48353042177159
3000000,t1,10,285.0,374.0,297.7,27.031052102679574
3000000,t2,10,1075.0,1169.0,1090.4,27.969030492075813
4000000,t1a,10,303.0,344.0,313.5,14.946199814296907
4000000,t1,10,286.0,324.0,295.5,14.713938969562161
4000000,t2,10,1330.0,1379.0,1345.6,18.745073426844126
5000000,t1a,10,305.0,368.0,314.1,19.069754994638906
5000000,t1,10,287.0,350.0,296.1,19.017243637171912
5000000,t2,10,1589.0,1653.0,1599.6,19.409047145883054
6000000,t1a,10,304.0,336.0,312.5,10.40566085252531
6000000,t1,10,284.0,321.0,294.6,11.137524161340547
6000000,t2,10,1847.0,1879.0,1856.1,10.577229210798912
7000000,t1a,10,302.0,352.0,310.8,14.718091663738958
7000000,t1,10,286.0,335.0,293.4,14.773850773128402
7000000,t2,10,2099.0,2145.0,2109.9,13.510900948657882
8000000,t1a,10,302.0,361.0,315.0,17.84501175243223
8000000,t1,10,285.0,343.0,296.4,17.939404176901256
8000000,t2,10,2352.0,2418.0,2367.8,19.848313670323623
9000000,t1a,10,303.0,363.0,311.7,18.16009055288241
9000000,t1,10,284.0,345.0,293.9,18.16865432551349
9000000,t2,10,2611.0,2671.0,2622.7,17.619749020787882

In all Figures, the continuous line represents asynchronous timings, those without
waiting for splash before start-up using a MediaTracker. The dashed lines represent
waiting for splash, or synchronous runs.

First note that when not waiting, start-up ¢, begins much sooner compared to wait-
ing, as you might expect. See Figure f§, 150ms versus 300ms on average. Figure Jj com-
pares splash latency, while Figure [compares start-up latency. Synchronous splash-
ing time t;,, the dashed line of Figure [, hovers just around 310ms. Asynchronous
comes just a little later around 325ms. No significant difference. The small overhead
may relate to thread switching and synchronisation. This confirms the previous ex-
periment conclusions. Also note t;, = 0 at loop iterations n = 0. So event ¢;, did not

43

t1

325
010 S S e s
275
250
225
200
g 175 | I\ Async
150 \Sync
125
100
75
50
25

01 2 3 4 5 6 7 8 9
lterations 1E6

Figure 8: t; comparison, Linux workstation

t1a

350
325 — -
300
275
250
225
200

|
|
|
:’
\ Async
175 ’
|
|
|
|
|

ms

150 *4 Sync
125
100
75
50
25

01 2 3 4 5 6 7 8 9
lterations 1E6

Figure 9: t;, comparison, Linux workstation

44

t2

2750

4
2500 P
2250 ey
4
K4l
2000 Ky
1750 2
"
1 2
g 500 'y \ Async
1250 ” *4 Sync
/ =
1000 ','
750 7
'O
500 ':;/r
250 1
0
0 1 2 3 4 5 6 7 8 9

lterations 1E6

Figure 10: t, comparison, Linux workstation

occur with zero iterations. The test run terminated before the splash appeared. This is
correct behaviour for asynchronous splashing.

Finally, for the Linux runs, note ¢, occurs consistently sooner when not waiting.
Thus, asynchronous splashing gives better start-up latency.

F2.2 NT workstation
Asynchronous results:

0,t1,10,671.0,721.0,680.0,15.238839267549947
0,t2,10,671.0,721.0,680.0,15.238839267549947
1000000,t1,10,671.0,701.0,680.0,11.972189997378647
1000000,t2,10,2744.0,2784.0,2759.0,13.5400640077266
2000000,t1,10,671.0,701.0,678.0,10.593499054 713803
2000000,t2,10,4747.0,4897.0,4854.0,40.0138864 78460336
3000000,t1,10,671.0,701.0,676.0,9.7182531580755
3000000,t2,10,6849.0,6880.0,6860.6,10.002221975363497
4000000,11,10,671.0,701.0,679.0,10.327955589886445
4000000,t2,10,8822.0,8923.0,8875.9,29.28196259360587
5000000,t1,10,671.0,701.0,679.0,10.327955589886445
5000000,t2,10,10875.0,10925.0,10888.2,15.70421033424547
6000000,t1,10,671.0,711.0,679.0,13.165611772087667
6000000,t2,10,12878.0,12949.0,12899.7,23.800326795142027
7000000,t1,10,670.0,701.0,677.9,9.573690801125528
7000000,t2,10,14881.0,14941.0,14897.3,16.350671070156245
8000000,t1,10,671.0,701.0,678.0,10.593499054 713803

45

8000000,t2,10,16874.0,16965.0,16904.4,28.170906978654415
9000000,t1,10,671.0,711.0,678.0,13.374935098492585
9000000,t2,10,18897.0,18967.0,18916.2,20.208908926510603

Notice absence of ¢, events, no splashes! Synchronous results:

0,t1,10,961.0,992.0,967.5,9.902300518341965
0,t1a,10,951.0,992.0,960.4,14.60745623911904
0,t2,10,961.0,992.0,967.5,9.902300518341965
1000000,t1,10,961.0,1001.0,968.3,12.428014948315582
1000000,t1a,10,951.0,981.0,957.3,9.580651798749859
1000000,t2,10,3024.0,3064.0,3029.3,12.570247058475466
2000000,t1,10,961.0,1011.0,972.4,17.20594212603438
2000000,t1a,10,951.0,991.0,961.4,14.841383583300672
2000000,t2,10,5018.0,5067.0,5033.2,15.838069467092396
3000000,t1,10,961.0,992.0,970.5,10.124228365658293
3000000,t1a,10,951.0,982.0,962.5,10.013879257199868
3000000,t2,10,7020.0,7081.0,7033.2,17.319225027568514
4000000,t1a,10,951.0,992.0,961.3,13.589620221984 784
4000000,t1,10,961.0,982.0,969.3,9.393259994982218
4000000,t2,10,9013.0,9073.0,9036.0,15.670212364724211
5000000,t1,10,961.0,991.0,969.2,10.3794669098819
5000000,t1a,10,951.0,981.0,961.2,10.549354903921325
5000000,t2,10,11026.0,11065.0,11034.9,11.685223337379755
6000000,t1,10,961.0,1001.0,971.3,12.211561006776416
6000000,t1a,10,951.0,981.0,961.3,10.231215850414738
6000000,t2,10,13018.0,13079.0,13033.6,19.068298298484844
7000000,t1,10,961.0,1001.0,970.3,12.815355372885035
7000000,t1a,10,951.0,981.0,959.3,10.29616973010406
7000000,t2,10,15021.0,15071.0,15034.5,14.766704288891125
8000000,t1a,10,951.0,992.0,961.4,14.229859060752812
8000000,t1,10,961.0,991.0,969.4,10.319345371140987
8000000,t2,10,17024.0,17065.0,17034.4,13.426342266852378
9000000,t1,10,961.0,1001.0,967.4,12.447221912271562
9000000,t1a,10,951.0,991.0,959.4,13.074147518417151
9000000,t2,10,19017.0,19077.0,19032.4,16.439789130845526

Figures [T through [[3 plot these data graphically.

Now the picture differs. Asynchronous splashing still gives faster ¢; and ¢,, but
no ti,! The splash screen does not appear at all, see Figure [2. Even though suffi-
cient time has elapsed for the splash, it does not appear. Reasons may include not
having sufficient resource to progress multiple threads simultaneously. Uniprocessor
bottleneck may be starving the image loader thread. Alternatively, or on top of that,
coarse-grained thread switching implementation may starve the loader.

46

1000
900
800
700
600

500 \ Async
*4 Sync
400

ms

300
200
100

01 2 3 4 5 6 7 8 9
lterations 1E6

Figure 11: t; comparison, NT workstation

1000 T
900
800
700
600

500 \ Async
‘. Sync

ms

400
300
200
100

01 2 3 4 5 6 7 8 9
lterations 1E6

Figure 12: t;, comparison, NT workstation

47

t2

20000
18000 //
16000 //
14000 /
/

/
12000 7

(2]
£ 10000 // \ Async
J *. Sync

8000
pd

6000
e
4000 //

o/
2000
4

01 2 3 4 5 6 7 8 9
lterations 1E6

Figure 13: t, comparison, NT workstation

Figures [[4 through [I§ re-run the experiment but alter priority of the main thread
to 4, one step lower. The image loader thread remains at priority 5. Java code in
Appendix [| dumps thread priorities.

Point ¢; shows no change. Start-up latency ¢, is now approximately identical. How-
ever, the splash screen now appears, but about 6 seconds later when asynchronously
splashing. It points to multi-threading issues. Perhaps thread switching is not pre-
emptive for threads having equal priority!

E3 Conclusions

Based on these results:

e Currentimplementations of the Java virtual machine poorly handle asynchronous
image loading on uniprocessor platforms.

e Waiting for the splash improves splash latency without adversely affecting start-
up latency on uniprocessors.

e Multiprocessor platforms run Java threads in parallel without significant over-
head. It does improve start-up latency without adversely affecting splash la-
tency.

F4 Solutions

Lowering main thread priority is one solution, or otherwise adjusting relative image
loader versus main thread priorities. Shuffling priorities gives only partial improve-
ment though, see Figure [[5. It still takes 6 seconds longer. Curiously, start-up latency

48

1000
900
800
700
600
500 \ Async —p4
400 S Sync
300
200
100

ms

01 2 3 4 5 6 7 8 9
lterations 1E6

Figure 14: t; comparison, NT workstation, main thread priority 4

t1a

1600
1500
1400
1300 |
1200 |

|

1100
1000 -
900 =1

\ Async -p4
‘. Sync

800
700

|

:’

600
|
|

ms

500
400
300
200
100

01 2 3 4 5 6 7 8 9
lterations 1E6

Figure 15: t;, comparison, NT workstation, main thread priority 4

49

t2
20000
18000 //
16000 //
14000 //
12000 //
é’ 10000 // }fs\sync -p4
8000 // A
/
6000
//
4000 7

2000
4

o 1 2 3 4 5 6 7 8 9

Iterations 1E6

Figure 16: t, comparison, NT workstation, main thread priority 4

to goes unaltered. Could this indicate that image loading has heavier computing load
than expected? If so, it might help explain the disparities.

Pragmatic approach requires a possible delay just after starting the splash. Pos-
sibility depends on platform, more computing resources, less delay. Four or more
processors, no delay. One processor, full delay. Java’s Runtime class returns number
of available processor. For example, the Linux box running these experiments gives
Runtime.getRuntime().availableProcessors() equal to 4. This return value can decide
how to delay, either full delay, no delay, or limited delay. Below gives one conceivable
implementation.

public void delayForSplash() {
int cpus = Runtime.getRuntime (). availableProcessors ();
switch (cpus) {
case 0: // pathology!
case 1:
waitForSplash ();
break ;
case 2:
case 3: // ?
waitForSplash (1000 / cpus);
¥

}

Extract below gives example usage. It uses the Singleton interface.
public static void main(String [] args) {

SplashScreen.instance (). splash ();
SplashScreen.instance (). delayForSplash ();
/1
/1
/1
SplashScreen.instance (). splashFor(1000);

50

SplashScreen.instance (). dispose ();

E5 Further work

e Run the experiment on dual processor platforms. Also, platforms not based on
Intel x86 32-bit architecture, uni- and multi-processors.

e Is ‘processor count’ the only factor? Try to discover other sources of bottlenecks.

51

O ® N G e W N =

Gl R R R B R R R R R @ W W W W W W W W RN NRNNNNRN N S s s e s s e s
S 6 &% U & &G B &K B S © ®» I & G & O R0 2 & @ ® 9 6 Gk ® RN = S © ® 9 0 a & ® 0 = o

G StatisticalAccumulator.java

[

*+ @(#) StatisticalAccumulator.java 1.1 19—Jan—-04

*

x Copyright (C) 2004, Roy Ratcliffe, Lancaster, United Kingdom.

x All rights reserved.

*

x This software is provided ‘‘as is’’ without warranty of any kind,
x either expressed or implied. Use at your own risk. Permission to
x use or copy this software is hereby granted without fee provided
x you always retain this copyright notice.

*/
import java.io.Serializable;
[%

Accumulates statistics.

Objects of the StatisticalAccumulator class emulate a

scientific calculator in statistical mode. You can use it to
compute the following statistics:

 arithmetic mean (average)

 standard deviation, sample—based

< li> standard deviation, population—based

< li> minimum

< li > maximum

<lul>

Use the add(x) method to add data to the accumulator. This is
equivalent to the M+ button on a calculator. The statistics are
updated to reflect the new data value.

<p>

This implementation uses longs and doubles, not optimum for all
cases. Some usage may require narrower ranges for speed or other
reasons. The class has scope for expansion, a FloatSac subclass
for example.

¥ X ¥ K X X X K KK K K X X x ¥ ¥ ¥ ¥

*

*/
public class StatisticalAccumulator implements Serializable {

private long nX;

private double sumX;
private double sumX2;
private double minX;
private double maxX;

public void clear () {
nxX = 0;
sumX = sumX2 = 0;
minX = maxX = Double.NaN;

public StatisticalAccumulator add(double x) {
nX++;

52

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

}

sumX += X;

sumxX2 += X x X;
if (nX ==1){
minX = Xx;
maxX = X;
}
else {
if (x < minX) minX
if (x> maxX) maxX
}

return this ;

public long n() {

return nX;

¥
public double sum() {
if (nX == 0) return Double.

}

return sumxX;

public double sum2() {
if (nX == 0) return Double.

return sumxX2;

public double min() {
if (nX == 0) return Double.

return minX;

public double max() {
if (nX == 0) return Double.

return maxX;

public double average() {
if (nX == 0) return Double.

return sumX / nX;

public double stDev() {
if (nNX < 2) return Double.NaN;

return Math.sqrt ((nX x sumX2 — sumX

}
public double stDevP () {
if (nX < 1) return Double.NaN;

return Math.sqrt((nX x sumX2 — sumX

}
public double var() {
if (nNX < 1) return Double.NaN;

}

return (nX x sumX2 — sumX * sumX) /

public String toString () {

return "[n=" + nX
+ 7,sum=" + sumX

NaN;

NaN ;

NaN ;

NaN ;

NaN;

53

% sumX) / (nX % (nX — 1)));

« sumX) / (nX % nX));

(nX % nX);

103
104
105
106
107
108
109

+ + + +

7, sum2=’

7, min=’
” , maX:,

"1

+ sumx2
+ minX
+ maxX

54

© ® N G oA W N =

Gl R Rl R R W W W W W W W R NN NN N RNNN N s s s s s s s
S © ® 9 & O kB ® R =B © v ® 9 3 @O kB @ RN R S Y ®» N O FE XN R SO WOV ® N TR @ N R O

H TimeSac.java

/

All

¥ X ¥ X ¥ ox % ¥ ox ¥

*
~

import
import
import
import
import
import
import
import
/

*

* ¥ ¥ ¥ x % ¥

*

*/

rights

This software

java.
java.
java.
java.
java.
java.
java.
java.

measurement.
<pre>
TimeSac. instance (). load ("timesacl");
TimeSac. instance (). t("tl");

TimeSac.instance ().save(”timesacl”);
<lpre>

public class

util .Map;
util .HashMap;

util . lterator;
io.Serializable;
io.FilelnputStream;
io.ObjectlnputStream;
io.FileOutputStream;
io.ObjectOutputStream;

@(#)TimeSac.java 1.1 19—Jan-04

Copyright (C) 2004, Roy Ratcliffe, Lancaster, United Kingdom.
reserved.

is provided ‘‘as is’'' without warranty of any kind,
either expressed or implied. Use at your own risk. Permission to
use or copy this software is hereby granted without fee provided

you always retain

this copyright notice.

Statistically accumulates time samples. Useful for performance
Supports persistence between runs.

TimeSac implements Serializable {
private Map x_sac_-t = new HashMap();

public void t(Object x) {
long t = Time.at();
StatisticalAccumulator sac;
1 if (!'x_sac_t.containsKey(x))
/1l Xx_sac_t.put(x, sac = new StatisticalAccumulator ());
/1l else
/1 sac = (StatisticalAccumulator)x_sac_t.get(x);
sac = (StatisticalAccumulator)x_sac_t.get(x);
if (sac == null)
x_sac_t.put(x, sac = new StatisticalAccumulator ());
sac.add(t);
public void load(String filename) {

try {
FilelnputStream fis = new FilelnputStream (filename);

ObjectlnputStream ois = new ObjectlnputStream(fis);

Xx_sac_t

(Map) ois .readObject ();

55

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

94
95
96
97

catch (java.io.FileNotFoundException fnfe) {}
catch (java.io.lOException ioe) {}
catch (ClassNotFoundException cnfe) {}

public void
try {

FileOutputStream fos = new FileOutputStream(filename);
ObjectOutputStream oos = new ObjectOutputStream (fos);

save(String filename) {

oos.writeObject(x_sac_t);

}

catch (java.io.lOException ioe) {}

public Iterator

return

}

iterator () {

x_sac_t.entrySet (). iterator ();

public String toString () {
StringBuffer sb = new StringBuffer ();
sb.append ("{");

Iterator

it = iterator ();

boolean hasNext = it.hasNext();
while (hasNext) {
Map. Entry me = (Map.Entry)it.next();
Object x = me.getKey();

StatisticalAccumulator sac = (StatisticalAccumulator)me. getValue ();

sb.append(x +

"in=
”,sum=

", sum2=

"o min=
", max=

+ sac.n() +

+ sac.sum() +

+ sac.sum2() +

+ sac.min() +
+ sac.max() +

", average=" + sac.average() +

", st—dev=

+ sac.stDev () +

", st—dev—p=" + sac.stDevP () +

",var=

+ sac.var());

hasNext = it.hasNext();

if (hasNext) sb.append (’

}
sb.append ('});
return sb.toString ();

}

private static

public static synchronized
if (null == singleton) singleton =

return

singleton;

TimeSac singleton =

56

)

null ;
TimeSac instance () {

new TimeSac();

O ® N G e W N =

-
S

11

I threadtree.java

@(#)threadtree.java 1.1 20—Jan—-04

Copyright (C) 2004, Roy Ratcliffe,

This software is provided ‘‘as is’
Use at your own risk. Permission to
is hereby granted without fee provided
this copyright notice.

[

k

*

*

x All rights reserved.

*

k

x either expressed or implied.
x use or copy this software
x you always retain

*/

public class threadtree {

public static

Lancaster, United Kingdom.

String threadtree () {

without warranty of any kind,

StringBuffer sb = new StringBuffer ();

/1 Java thread groups have a hierarchy. Every thread group

// has a parent, except the

root group.

/1l First, walk the thread group tree from group to group until

/1l the parentless

root group appears.

ThreadGroup root = Thread. currentThread ().getThreadGroup (), tg;
while ((tg = root.getParent()) != null)
root = tg;

/!l Now, step through the tree of thread groups. Start at the

// root and,

using a stack, push thread subgroups until the stack empties.

java. util .Stack s = new java. util.Stack();

s.push(root);

while (!s.empty()) {
tg = (ThreadGroup)s.pop();

StringBuffer indentsb = new StringBuffer ();
ThreadGroup parent = tg;
while ((parent = parent.getParent()) !'= null)
indentsb.append ("\'t’);
String indent = indentsb.toString ();

sb.append(indent).append(tg).append('\n’);

/!l How many groups nested within this one? Make an
initial estimate then enumerate each one. Threads and
/1 thread groups exist asynchronously, so every answer

/1l gives a snapshot at /one/ point in time.

gc = tg.activeGroupCount();

ThreadGroup[] tgs = new ThreadGroup[gc * 2];

gc = tg.enumerate(tgs);
(int 1 =0; i < gc; i++)

I

int

for

s.push(tgs[i]);

/1 Snapshot the threads currently active in this group.

int

c = tg.activeCount();

57

51
52
53
54
55
56
57
58
59
60
61
62
63

}

Thread[] ts = new Thread[c x 2];

c = tg.enumerate(ts);

for (int i = 0; i < c; i++)
sb.append(indent).append(ts[i]).append('\n’);

}

return sb.toString ();

public static void main(String[] args) {

}

System.out. print(threadtree ());

58

	Introduction
	Requirements analysis
	Comparisons
	Optional requirements

	Object-oriented design and implementation
	Classes
	Associations
	Behaviours
	Optional behaviours

	Implementation

	Tests
	Null test
	Loop delay
	Simple splash
	Conclusions

	Frame instantiation
	Conclusions

	Google splash
	Conclusions

	Randelshofer comparison
	Slow splash
	Multiple splashes
	Splash duration
	Crufted splash

	SplashScreen.java
	Time.java
	MyAppSplash.java differences
	Derek Clarkson's comp.lang.java.gui article
	Asynchronous load timing experiment
	Method
	Test program 1
	Test program 2

	Results
	Uniprocessor NT
	Dual-processor Linux

	Conclusion

	Follow-on load timing experiment
	Method
	Platforms
	Software

	Results
	Linux workstation
	NT workstation

	Conclusions
	Solutions
	Further work

	StatisticalAccumulator.java
	TimeSac.java
	threadtree.java

