Virtual Cubes

Digital Clock Cube

Install the Java Plug-in to see the Virtual Cubes!

Digital Clock Cube

This cube can display the time of the day on a selected face by rotating and twisting some parts of the cube. The time can be displayed in hours, minutes and seconds in 1 second steps. In the initial state the cube shows 0:00:00.

In addition the cube can also display a list of numbers and constants.

The layout of the Digital Clock Cube was created in 2008 by André Boulouard and Walter Randelshofer.

Digital Clock

Range from 0:00:00 up to 24:00:00
in 1 second steps.

Accumulated Time Counter

Range from 0:00:00 up to 59:59:59
in 1 second steps.

Mathematical Constants

Constant Description
3.1415 (3.1416) Archimedes' constant Pi (π)
1.4142 Pythagoras' constant (√2)
2.23606 Pythagorian constant (√5)
3.1622 Pythagorian constant (√10)
1.3247 Plastic constant (ρ)
2.5029 Feigenbaum constant (α)
0.2614 Meissel-Mertens constant (M1)
1.1319 Viswanath's constant (K)
1.4513 Ramanujan-Soldner constant (μ)
0.2801 Bernstein's constant (β)
0.3036 Gauss-Kuzmin-Wirsing constant (λ)
0.3532 Hafner-Sarnak-McCurley constant (σ)
1.2020 Apéry's constant (ζ(3))
1.30637 Mills' constant (θ)
2.5849 Sierpiński's constant (K)
2.2955 Parabolic constant (P2)
1.0836 Legendre's constant (B'L)
1.45607 Backhouse's constant
1.18656 Khinchin-Lévy constant
3.2758 Lévy's constant

Physical Constants

Constant Description
1.0545 [× 10-34 J · s] Planck or Dirac constant (ℏ)
2.17645 [× 10-8 kg] Planck mass (mp)
5.3912 [× 10-44 s] Planck time (tp)
2.5812 [× 104 Ω] von Klitzing constant (RK)
1.3806 [× 10-23 J · K-1] Boltzmann constant (k or kB)
5.0507 [× 10-27 J · T-1] nuclear magneton
0.52917 [× 10-10 m] Bohr radius
1.16639 [× 10-5 GeV-2] Fermi coupling constant
1.1910 [× 10-16 W · m2 sr-1] First radiation constant
22.4139 [× 10-3 m3 · mol-1] molar volume of an ideal gas
0.2221 weak mixing angle

Some remarkable numbers

Number Description
959959959 959959959
656656656 656656656
1.1640 (6/5)5/6
1.1111 10/9
1.1515 7/6
0.3333 1/3
1.3333 4/3
2.3333 7/3
3.3333 10/3
© Walter Randelshofer. All rights reserved.