### Super Cube 'Bandelow'

A Super Cube is a design variation of the Rubik's Cube which visualizes the
orientation of side parts. Because of this, a Super Cube has 2048 times more positions than a regular
cube (4^6/2 = 2048).

You can create a Super Cube easily by yourself. All you need is a felt marker.
The design shown on the left uses felt marker strokes to show the orientation of the side parts. Each
stroke connects the sticker of a side part with the sticker of one adjacent edge part.

**Algorithms to twist centers**

(R U R U-)5

(20l,20f,20q) (++r)

(U · R L · U2 · R- L-)2

(12l,12f,14q) (++u)

M. B. Thistlethwaite

(U- R2 U2 R- U2 R2)3

(18l,18f,30q) (+r) (+u)

(MR- MD- MR) U- (MR- MD MR) U

(8l,14f,14q) (-r) (+u)

(MR- MD- MR) U2 (MR- MD MR) U2

(8l,14f,16q) (++r) (++u)

(MR- MD2 MR) U- (MR- MD2 MR) U

(8l,14f,18q) (-d) (+u)

(MR- MD2 MR U2)2

(8l,14f,20q) (++d) (++u)

CD- · MR MD MR- D MR MF MR- F- MD MF- MD- F U-

(13l*,22f,22q) (+r) (+u) (+f) (-l) (+d) (+b)

Herbert Kociemba

Notation

Optimal algorithms
to twist the centers from Herbert Kociemba.

Design taken from:

Bandelow, Christoph. (1981). Einführung in die Cubologie. Wiesbaden: Vieweg.

Faces of the cube:
512 x 512,
1024 x 1024

Enlarged view